Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.24406/pu...
Other literature type . 2020
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficiency Roadmap for Evolutionary Upgrades of PERC Solar Cells by TOPCon: Impact of Parasitic Absorption

Authors: Christoph Messmer; Andreas Fell; Frank Feldmann; Nico Wohrle; Jonas Schon; Martin Hermle;

Efficiency Roadmap for Evolutionary Upgrades of PERC Solar Cells by TOPCon: Impact of Parasitic Absorption

Abstract

Passivating contacts created via a thin interfacial oxide and a highly doped polysilicon layer, e.g., the TOPCon technology, are on the verge of being implemented in solar cell mass production. Investment decisions rely on R&D to identify the most promising implementation option, meaning a trustworthy roadmap based on predicted performance gains. This article shows how to thoroughly quantify the performance potential via numerical simulation, focusing on an evolutionary upgrade of a busbarless p-type bifacial passivated emitter rear cell (PERC) technology. We specifically highlight the need to consider not only the electrical gains of passivating contacts, but also the associated optical losses due to parasitic absorption in the polysilicon layers for front and rear illumination. The influence of free-carrier absorption in polysilicon on the solar cell optics is characterized on experimental test structures in order to verify our optical simulation model. Introducing TOPCon fully at the rear and also locally aligned to the front fingers can boost the PERC efficiency by approximately 1%abs. The final device is strongly limited by losses in the p-type c-Si bulk and phosphorus-doped front emitter. Consequently, the presented evolutionary TOPCon upgrades may well be of increased relevance for future improved p-PERC cells, as an alternative to the current focus on n-type TOPCon cells with boron emitter.

Country
Germany
Keywords

500

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 1%
Top 10%
Top 1%