Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Journal of Phot...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Journal of Photovoltaics
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of Water Ingress on Molybdenum Thin Films and Its Effect on Cu(In,Ga)Se2 Solar Cells

Authors: Shankar Karki; Julia I. Deitz; Grace Rajan; Sina Soltanmohammad; Deewakar Poudel; Benjamin Belfore; Gandhari Bhandari; +3 Authors

Impact of Water Ingress on Molybdenum Thin Films and Its Effect on Cu(In,Ga)Se2 Solar Cells

Abstract

Solar cell degradation can occur through many pathways and at the different stages of the fabrication process, notably because of the water condensation. In the case of Cu(In,Ga)Se2 (CIGS) solar cells, the impact of water ingress on Mo back contact can be substantial for not only the film itself but also the device performance and reliability. Microstructural modification, change in film morphology, loss in reflectance, and increased resistivity because of the moisture ingress were observed via X-ray diffraction, transmission electron microscopy, spectroscopic ellipsometry, and four-point probe measurements, respectively. Secondary ion mass spectrometry measurements revealed drastic changes in the alkali (Na, K) profiles in both the CIGS and Mo layers, likely because of the modification of their diffusion coefficient through Mo. This, in turn, negatively impacts the solar cell efficiency by decreasing both fill factor and open-circuit voltage. Additional experiments, modifying the substrate and utilizing a NaF postdeposition treatment, highlight the mechanisms of degradation as being due to both a modification of the Mo/CIGS interface and the lack of alkali diffusion after water ingress.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
hybrid
Related to Research communities
Energy Research