Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reduced Kernel Random Forest Technique for Fault Detection and Classification in Grid-Tied PV Systems

Authors: Khaled Dhibi; Radhia Fezai; Majdi Mansouri; Mohamed Trabelsi; Abdelmalek Kouadri; Kais Bouzara; Hazem Nounou; +1 Authors

Reduced Kernel Random Forest Technique for Fault Detection and Classification in Grid-Tied PV Systems

Abstract

The random forest (RF) classifier, which is a combination of tree predictors, is one of the most powerful classification algorithms that has been recently applied for fault detection and diagnosis (FDD) of industrial processes. However, RF is still suffering from some limitations such as the noncorrelation between variables. These limitations are due to the direct use of variables measured at nodes and therefore the only use of static information from the process data. Thus, this article proposes two enhanced RF classifiers, namely the Euclidean distance based reduced kernel RF (RK-RF $_{\text{ED}}$ ) and K-means clustering based reduced kernel RF (RK-RF $_{\text{Kmeans}}$ ), for FDD. Based on the kernel principal component analysis, the proposed classifiers consist of two main stages: feature extraction and selection, and fault classification. In the first stage, the number of observations in the training data set is reduced using two methods: the first method consists of using the Euclidean distance as dissimilarity metric so that only one measurement is kept in case of redundancy between samples. The second method aims at reducing the amount of the training data based on the K-means clustering technique. Once the characteristics of the process are extracted, the most sensitive features are selected. During the second phase, the selected features are fed to an RF classifier. An emulated grid-connected PV system is used to validate the performance of the proposed RK-RF $_{\text{ED}}$ and RK-RF $_{\text{Kmeans}}$ classifiers. The presented results confirm the high classification accuracy of the developed techniques with low computation time.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 1%
Top 10%
Top 1%