Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of Substrate Thickness on the Degradation in Multicrystalline Silicon

Authors: Utkarshaa Varshney; Moonyong Kim; Muhammad Umair Khan; Phillip Hamer; Catherine Chan; Malcolm Abbott; Bram Hoex;

Impact of Substrate Thickness on the Degradation in Multicrystalline Silicon

Abstract

Light and elevated-temperature-induced degradation (LeTID) is a well-known phenomenon that reduces the bulk lifetime in silicon wafers. The cause of this degradation mechanism is still under investigation. However, a wide range of empirical trends that correlate LeTID with multiple physical and processing parameters have been reported, including the observation that wafers thinner than 120 μm do not show significant LeTID. In this work, we extend that study by varying the thickness of the wafers, the temperature of the firing step, and testing LeTID at the accelerated stability testing conditions. We demonstrate that the extent of degradation reduces with the thickness of the wafer, in agreement with the earlier work. However, silicon wafers with a thickness below 120 μm still suffer from LeTID when fired at sufficiently high temperatures, demonstrating that thinner wafers are not inherently immune to LeTID. By performing accelerated testing using a high-intensity laser and fitting the degradation and regeneration data, we observe that thinner wafers do not necessarily exhibit a faster recovery, as suggested earlier. However, their reduced degradation extent could be a consequence of relatively higher out-diffusion of hydrogen per unit volume in thinner wafers during firing. We further report that the method used for thinning the wafers results in a variation in the surface morphology of the samples, and that may partly be responsible for the observed correlation between the thickness of the wafers and LeTID extent. Finally, we discuss how these new findings can be explained by the involvement of hydrogen and other impurities in LeTID.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%