
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Field-Effect Passivation of Undiffused Black Silicon Surfaces

Black silicon (b-Si) surfaces typically have a high density of extreme nanofeatures and a significantly large surface area. This makes high-quality surface passivation even more critical for devices such as solar cells with b-Si surfaces. It has been hypothesized that conformal dielectrics with a high fixed charge density ( ${{\boldsymbol{Q}}_{\boldsymbol{f}}}$ ) are preferred as the nanoscale features of b-Si result in a significant enhancement of field-effect passivation. This article uses 1-D, 2-D, and 3-D numerical simulations to study surface passivation of b-Si, where we particularly focus on the charge carrier control by | ${{\boldsymbol{Q}}_{\boldsymbol{f}}}$ | up to 1 × 1013 cm−2 under accumulation conditions. We will show that there is a significant space charge region compression in b-Si nanofeatures, which affects the charge carrier population control for moderate | ${{\boldsymbol{Q}}_{\boldsymbol{f}}}$ | up to a1 × 1012 cm−2. The average surface minority charge carrier density can be reduced by 70% in some cases, resulting in an equivalent reduction in area-normalized surface recombination losses if the effective surface recombination velocity ( ${{\boldsymbol{S}}_{{\rm{eff}}}}$ ) is limited by minority carriers. This provides a possible solution for the empirical ${{\boldsymbol{S}}_{{\rm{eff}}}} \propto 1/{\boldsymbol{Q}}_{\boldsymbol{f}}^4$ reported previously. We will also show that the situation is more complicated for surface passivation films where the ratio between the electron and hole capture cross section ( ${{\boldsymbol{\sigma }}_{\boldsymbol{n}}}$ / ${{\boldsymbol{\sigma }}_{\boldsymbol{p}}}$ ) is higher than 10 for p -type surfaces. For commonly used surface passivation films with a | ${{\boldsymbol{Q}}_{\boldsymbol{f}}}$ | larger than a1 × 1012 cm−2, there is little space charge compression for b-Si. Consequently, ${{\boldsymbol{S}}_{{\rm{eff}}}}$ simply scales with the surface area, i.e., there is no enhanced reduction of surface recombination by field-effect passivation on b-Si.
- Macquarie University Australia
- Macquarie University Australia
- UNSW Sydney Australia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
