
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Improved Laser-Induced Defect Passivation and Simultaneous Elimination of Light-Induced Degradation in p-Type Czochralski Silicon

Laser doping is a typical industrial method to introduce a local highly doped region in silicon solar cells to form a selective emitter. Such a process inherently introduces defects that can be a concern to the overall performance of the solar cell. Here, we investigate the effectiveness of laser-induced defect (LasID) passivation on lifetime test structures through different annealing processes, including high-temperature belt-furnace firing, low-temperature belt-furnace annealing, and an advanced hydrogenation process (AHP) for n+ laser-doped selective emitters. We demonstrate clear advantages of post treatment using a rapid 10 s AHP at 300 °C when the lifetime structures are prefired. For the examined laser speeds of 0.5–6 m/s (sheet resistances of 4--70 Ω/□), AHP is the most effective treatment method. For example, for a typical laser doping speed of 4 m/s, starting from the same effective carrier lifetime of 36.9±2.4 μs after laser-doping step for all the passivation treatments, the AHP not only surpasses the conventional approaches by showing the highest recovery of the effective carrier lifetime (∼79% compared with ∼63% and ∼41% for the firing and belt-furnace annealing treatments, respectively) and dark saturation current density reduction in the regions affected by LasIDs but also simultaneously suppresses light-induced degradation (maximum of 4% effective lifetime degradation with respect to the passivated state, as opposed to 14% and 16% degradation for the firing and belt-furnace annealing treatments, respectively) common in Cz grown boron-doped p-type monocrystalline silicon.
- UNSW Sydney Australia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
