
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Unified System-Level Modeling of Intermittent Renewable Energy Sources and Energy Storage for Power System Operation

The system-level consideration of intermittent renewable energy sources (RES) and small-scale energy storage in power systems remains a challenge as either type is incompatible with traditional operation concepts. Noncontrollability and energy constraints are still considered contingent cases in market-based operation. The design of operation strategies for up to 100% RES power systems requires an explicit consideration of nondispatchable generation and storage capacities, as well as the evaluation of operational performance in terms of energy efficiency, reliability, environmental impact, and cost. By abstracting from technology-dependent and physical unit properties, the power nodes modeling framework presented here allows the representation of a technologically diverse unit portfolio with a unified approach, while establishing the feasibility of energy-storage consideration in power system operation. After introducing the modeling approach, a case study is presented for illustration.
- Technical University of Denmark Denmark
- ETH Zurich Switzerland
- University of Copenhagen Denmark
Power Nodes, Active Power Control, Dispatch, Energy Storage, Load Management, Curtailment, Balancing, Intermittent Generation
Power Nodes, Active Power Control, Dispatch, Energy Storage, Load Management, Curtailment, Balancing, Intermittent Generation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).127 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
