Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Systems Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Systems Journal
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Systems Journal
Article . 2019
Data sources: VIRTA
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hybrid Optimization Algorithm to Solve the Nonconvex Multiarea Economic Dispatch Problem

Authors: Mokarram, Mohammed Jafar; Niknam, Taher; Aghaei, Jamshid; Shafie-khah, Miadreza; Catalão; João. P. S;

Hybrid Optimization Algorithm to Solve the Nonconvex Multiarea Economic Dispatch Problem

Abstract

In this paper, multiarea economic dispatch (MAED) problems are solved by a novel straightforward process. The solved MAED problems include transmission losses, tie-line constraints, multiple fuels, valve-point effects, and prohibited operating zones in which small, medium, and large scale test systems are involved. The methodology of tackling the problems consists in a new hybrid combination of JAYA and TLBO algorithms simultaneously to take the advantages of both to solve even nonsmooth and nonconvex MAED problems. In addition, a new and simple process is used to tackle with the interaction between areas. The objective is to economically supply demanded loads in all areas while satisfying all of the constraints. Indeed, by combining JAYA and TLBO algorithms, the convergence speed and the robustness have been improved. The computational results on small, medium, and large-scale test systems indicate the effectiveness of our proposed algorithm in terms of accuracy, robustness, and convergence speed. The obtained results of the proposed JAYA–TLBO algorithm are compared with those obtained from ten well-known algorithms. The results depict the capability of the proposed JAYA–TLBO based approach to provide a better solution.

Related Organizations
Keywords

ta222

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 1%
Top 10%
Top 1%
bronze