
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Demand Response Program Integrated With Electrical Energy Storage Systems for Residential Consumers

This article presents a distributed resilient demand response program integrated with electrical energy storage systems for residential consumers to maximize their comfort level. A dynamic real-time pricing method is proposed to determine the hourly electricity prices and schedule the electricity consumption of smart home appliances and energy storage systems commitment. The algorithm is employed in normal and emergency operating conditions, taking into account the comfort level of consumers. In emergency conditions, the power outage of consumers is modeled for different hours and outage patterns. To evaluate the applicability of the proposed model, real samples of Southern California households are considered to model the smart homes and their appliances. Further, a sensitivity analysis is performed to assess the impacts of the number of households and number of persons per household on the output results. The results showed that the proposed model reduced the costs of utility in normal and emergency conditions by about 33.77% and 30.92%, respectively. The values of total payments of consumers in normal and emergency conditions were decreased by about 34.26% and 31.31%, respectively. Further, the consumers comfort level for normal and emergency conditions increased by about 146.78% and 110.2%, respectively. Finally, the social welfare for normal and emergency conditions increased by about 46% and 49.06%, respectively. ; © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. ; fi=vertaisarvioitu|en=peerReviewed|
- University of Vassa Finland
- Shahid Beheshti University Iran (Islamic Republic of)
- Shahid Beheshti University Iran (Islamic Republic of)
- Universidade do Porto Portugal
- University of Vaasa Finland
690, ta213, Building automation, fi=Sähkötekniikka|en=Electrical Engineering|, smart homes, demand-side management, smart grid, optimization
690, ta213, Building automation, fi=Sähkötekniikka|en=Electrical Engineering|, smart homes, demand-side management, smart grid, optimization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
