Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Systems Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Systems Journal
Article . 2022
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Systems Journal
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Demand Response Program Integrated With Electrical Energy Storage Systems for Residential Consumers

Authors: Tehrani Nowbandegani, Motahhar; Setayesh Nazar, Mehrdad; Shafie-khah, Miadreza; Catalão; João P. S.;

Demand Response Program Integrated With Electrical Energy Storage Systems for Residential Consumers

Abstract

This article presents a distributed resilient demand response program integrated with electrical energy storage systems for residential consumers to maximize their comfort level. A dynamic real-time pricing method is proposed to determine the hourly electricity prices and schedule the electricity consumption of smart home appliances and energy storage systems commitment. The algorithm is employed in normal and emergency operating conditions, taking into account the comfort level of consumers. In emergency conditions, the power outage of consumers is modeled for different hours and outage patterns. To evaluate the applicability of the proposed model, real samples of Southern California households are considered to model the smart homes and their appliances. Further, a sensitivity analysis is performed to assess the impacts of the number of households and number of persons per household on the output results. The results showed that the proposed model reduced the costs of utility in normal and emergency conditions by about 33.77% and 30.92%, respectively. The values of total payments of consumers in normal and emergency conditions were decreased by about 34.26% and 31.31%, respectively. Further, the consumers comfort level for normal and emergency conditions increased by about 146.78% and 110.2%, respectively. Finally, the social welfare for normal and emergency conditions increased by about 46% and 49.06%, respectively. ; © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. ; fi=vertaisarvioitu|en=peerReviewed|

Country
Finland
Related Organizations
Keywords

690, ta213, Building automation, fi=Sähkötekniikka|en=Electrical Engineering|, smart homes, demand-side management, smart grid, optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
bronze