
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Resilience Assessment for Power Systems Under Sequential Attacks Using Double DQN With Improved Prioritized Experience Replay

The information and communication technology enhances the performance and efficiency of cyber-physical power systems (CPPSs). However, it makes the topology of CPPSs more exposed to malicious cyber attacks in the meantime. This article proposes a double deep-Q-network (DDQN)-based resilience assessment method for power systems under sequential attacks. The DDQN agent is devoted to identifying the least sequential attacks to the ultimate collapse of the power system under different operating conditions. A cascading failure simulator considering the characteristics of generators is developed to avoid a relatively optimistic assessment result. In addition, a novel resilience index is proposed to reflect the capability of the power system to deliver power under sequential attacks. Then, an improved prioritized experience replay technique is developed to accelerate the convergence rate of the training process for DDQN agent. Simulation results on the IEEE 39-bus, 118-bus, and 300-bus power systems demonstrate the effectiveness of the proposed DDQN-based resilience assessment method.
- Huazhong University of Science and Technology China (People's Republic of)
- Cardiff University United Kingdom
- Cardiff University United Kingdom
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology China (People's Republic of)
- Tennessee State University United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
