Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aalborg University R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VBN
Article . 2023
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Systems Journal
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multipurpose FCS Model Predictive Control of VSC-Based Microgrids for Islanded and Grid-Connected Operation Modes

Authors: Mohammad Ghiasi; Taher Niknam; Moslem Dehghani; Hamid Reza Baghaee; Zhanle Wang; Mohammad Mehdi Ghanbarian; Frede Blaabjerg; +1 Authors

Multipurpose FCS Model Predictive Control of VSC-Based Microgrids for Islanded and Grid-Connected Operation Modes

Abstract

This article presents an enhanced control strategy for renewable energy resources connected to the grid through voltage-sourced converters (VSCs) in microgrids. The proposed scheme contains a voltage control loop with the minimum inverter switching, a power-sharing controller with the minimum inverter switching, a negative-sequence current controller, and a loop to identify the control system operation mode. All the controllers are designed using the multipurpose finite control set-model predictive control (FCS-MPC) strategy. Since these controllers use the dynamic current and VSC voltage, they can be applied in grid-connected and island operation modes and transferred between them. The method uses voltage–frequency control instead of power control for VSCs. One inverter controls voltage, and the other controls current. The conventional FCS-MPC is enhanced to reduce the computation power by eightfold. This improvement is significant because the maximum switching frequency is limited in practical implementations. Also, the superiority of the proposed multipurpose control scheme is proved theoretically. Simulation is implemented using MATLAB software and compared with methods in the literature. The simulation demonstrates that the presented control strategy is efficient, authentic, and compatible. The proposed method is also tested and validated in hardware experiments.

Country
Denmark
Keywords

Control systems, Load modeling, voltage controller, Inverters, Power system stability, Power conversion, grid-connected operation mode (GCOM), /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, Voltage control, Current controller, finite control set-model predictive control (FCS-MPC), islanded operation mode, Switches

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
Green