Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A cognitive stochastic approximation approach to optimal charging schedule in electric vehicle stations

Authors: Elias B. Kosmatopoulos; Simone Baldi; Christes D. Korkas; Panagiotis Michailidis;

A cognitive stochastic approximation approach to optimal charging schedule in electric vehicle stations

Abstract

This paper proposes a Cognitive Stochastic Approximation (CSA)-based optimization method for charging an EV (electric vehicle) fleet, using a single, aggregate battery model. The charging station can either utilize the batteries of the parked vehicles to charge the vehicles before they leave, or can use power from the grid. The objective is to optimize the charging task with minimum energy costs, possibly taking into account price variations in the electricity price. The main advantage of the proposed approach is that it provides a nearly to optimal solution in the presence of uncertain charging/discharging dynamics. The method is evaluated through a numerical model of a grid-connected charging station. Four scenarios with different electricity price models are studied. The CSA optimization results are compared with the results obtained by a rule-based charging algorithm and by an open-loop optimal control algorithm: the results illustrate the advantages of the proposed CSA algorithm in minimizing the charging cost, satisfying the aggregate battery charge sustaining conditions and providing robust solutions in the presence of time-varying vehicle schedules.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Top 10%