Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/meleco...
Conference object . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Retrofitting existing buildings by means of innovative envelope components: low-impacting new assemblies

Authors: Laura Cirrincione; Maria La Gennusa; Concettina Marino; Antonino Nucara; Giorgia Peri; Gianfranco Rizzo; Gianluca Scaccianoce;

Retrofitting existing buildings by means of innovative envelope components: low-impacting new assemblies

Abstract

Current policies addressing the energy efficiency of buildings aimed at the control of their overall primary energy demand, require not only that the edifice envelope has to be properly designed to optimize its thermal performances, but also that the eco-friendly properties of the involved building materials have to be properly taken into account, in order of assessing all the associated environmental costs. In fact, the design of envelope structures that are able to realize proper levels of thermal insulation and, in the same time, to employ materials characterized by low environmental impacts, are believed as the most effective strategies to be adopted in the aim of addressing the above-mentioned issues. In this regard natural materials, such as vegetal fibres or materials derived from the recycling of industrial/ agricultural waste, reveal very attractive characteristics. Indeed, recent studies on the use of natural materials in buildings concentrate on raw materials deriving from either agriculture, waste, or recycling processes. Such topics are the focuses of the present analysis. Specifically, this paper intends to provide a contribution in the field by identifying new types of environment-friendly composites, containing vegetal matters and ecological waste resulting from recycling activities. Outcomes of a series of performed laboratory analyses concerning the thermal conductivity of four different samples of assemblies, are quite promising and candidate these new composites – albeit further analyses are certainly recommended – as a practicable alternative to the mostly used traditional insulating materials.

Country
Italy
Keywords

Thermal insulation; building envelope; waste materials; vegetal materials; thermal conductivity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average