Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/meleco...
Conference object . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vanadium Redox Flow Battery in Hybrid Propulsion Systems for Marine Applications

Authors: L. Barelli; D. Pelosi; M. Longo; D. Zaninelli; P. A. Ottaviano; F. Gallorini;

Vanadium Redox Flow Battery in Hybrid Propulsion Systems for Marine Applications

Abstract

Nowadays, the challenge of reducing air pollutants, which passes through increasingly stringent regulations on emissions, is also central in the maritime sector. A possible solution to overcome these limits could be the introduction of alternative propulsion systems to classic diesel engines. In the present work, the performance of a Hybrid Propulsion System (HPS) in marine, consisting of an internal combustion engine and a Vanadium Redox Flow Battery (VRFB) allowing an independent power and capacity sizing, was analyzed. Specifically, through a dynamic modeling, a daily work cycle has been simulated on the basis of a real load request. The possibility of implementing a hybrid system independent from a ground-based charging system was evaluated, in relation to the analyzed work cycle, by identifying the size of the battery (70 kW/ 5.8 kWh) and its minimum charging power (23 kW) necessary for the autonomous operation. Together with the results of the dynamic analysis, experimental results obtained on a real VRFB prototype of the innovative concept design implemented are provided.

Country
Italy
Keywords

energy storage, marine system, ship propulsion, dynamic model, energy storage, hybrid propulsion, marine system, ship propulsion, VRFB, VRFB, dynamic model, hybrid propulsion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average