

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Hydrogen-Based Integrated Energy and Transport System: The Design and Analysis of the Car as Power Plant Concept

In recent years, the European Union (EU) has set ambitious targets toward a carbon-free energy transition. Many studies show that a drastic reduction in greenhouse gas emissions-at least 90% by 2050-is required. In the transition toward a sustainable energy system, solar (or green) hydrogen plays many important roles, as it is a clean and safe energy carrier that can also be used as a fuel in transportation and in electricity production. To understand and steer the transition from the current energy system toward an integrated hydrogenbased energy and transport system, we propose a framework that integrates a technical and economic feasibility study, a controllability study, and institutional analysis. This framework is applied to the Car as Power Plant (CaPP) concept, which is an integrated energy and transport system. Such a system consists of a power system based on wind and solar power, conversion of renewable energy surpluses to hydrogen using electrolysis, hydrogen storage and distribution, and hydrogen fuel cell vehicles that provide mobility, electricity, heat, and water. Controlling these vehicles in their different roles and designing an appropriate organizational system structure are necessary steps in the feasibility study. Our proposed framework for a future 100% renewable energy system is presented through a case study.
- Delft University of Technology Netherlands
- Eindhoven University of Technology Netherlands
- Leiden University Netherlands
- Applied Sciences (United States) United States
- KU Leuven Belgium
690, Production, Hydrogen storage, Electron tubes, Automobiles, Hydrogen, Smart cities
690, Production, Hydrogen storage, Electron tubes, Automobiles, Hydrogen, Smart cities
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 106 download downloads 145 - 106views145downloads
Data source Views Downloads TU Delft Repository 106 145


