Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The University of Me...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Open Access Journal of Power and Energy
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Open Access Journal of Power and Energy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.17023/qt...
Other literature type . 2020
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Probabilistic Reverse Power Flows Scenario Analysis Framework

Authors: Antonin Demazy; Tansu Alpcan; Iven Mareels;

A Probabilistic Reverse Power Flows Scenario Analysis Framework

Abstract

Distributed Energy Resources (DER), mainly residential solar PV, are embedded deep within the power distribution network and their adoption is fast increasing globally. As more customers participate, these power generation units cause Reverse Power Flow (RPF) at the edge of the grid, directed upstream into the network, thus violating one of the traditional design principles for power networks. The effects of a single residential solar PV system is negligible, but as the adoption by end-consumers increases to high percentages, the aggregated effect is no longer negligible and must be considered in the design and configuration of power networks. This article proposes a framework that helps to predict the RPF intensity probability for any given scenario of DER penetration within the distribution network. The considered scenario parameters are the number and location of each residential DERs, their capacity and the daily net-load profiles. Classical simulation-based approach for this is not scalable as it relies on solving the load-flow equations for each individual scenario. The framework leverages machine learning techniques to make fast and precise RPF prediction within the network for each scenario. The framework enables the Distribution Network Service Providers (DNSPs) to assess DERs penetration scenarios at a granular level, derive and localise the RPF risks and assess the respective impacts on the installed assets for network planning purpose. The framework is illustrated with scenario analysis conducted on an IEEE 123 bus system and OpenDSS and shown that it can lead to multiple orders of magnitude savings in computational time while retaining an accuracy of 94% or above compared to classical brute force simulations.

This article proposes a framework that helps to predict the Reverse Power Flow intensity probability for any given scenario of Distributed Energy Resources penetration within the distribution network.

Country
Australia
Related Organizations
Keywords

TK1001-1841, Distribution or transmission of electric power, intermittent energy source, TK3001-3521, risk management, machine learning, Production of electric energy or power. Powerplants. Central stations, power system planning, Reverse power flows, DER-rich penetration

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold