Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Open Access Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Open Access Journal of Power and Energy
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing Oscillatory Stability With Dominant Grid-Forming Power Systems for Active Power Imbalances

Authors: Sander Lid Skogen; José Luis Rueda Torres;

Assessing Oscillatory Stability With Dominant Grid-Forming Power Systems for Active Power Imbalances

Abstract

As the integration of renewable energy accelerates, ensuring power system stability becomes increasingly critical. This research utilized a Root Mean Square (RMS) synthetic model of the future 380 kV Dutch power system towards 2050 to analyze its oscillatory stability under high renewable penetration and the impact of grid-forming converters under various parametrizations. The presented case study shows that grid-forming (GFM) converters significantly improve frequency stability and damping performance across different perturbations, particularly at higher GFM penetration levels, improving frequency and damping parameters. However, various oscillatory modes present potential stability risks at high penetration levels. The case study also shows minimal differences in controller selection in large-scale models, except under certain conditions. Additionally, the analysis of controller parameters highlighted the critical importance of tuning active power parameters to ensure system stability. The investigation provides essential insights for future power systems, where large-scale integration of renewable energy will necessitate the implementation of converters able to provide ancillary services. The findings emphasize the importance of optimizing GFM converter settings and penetration levels to maintain system resilience, offering valuable guidance for future system planning and regulatory frameworks.

Keywords

Dynamic active power management, digital model of power systems, TK1001-1841, energy transition, Production of electric energy or power. Powerplants. Central stations, Distribution or transmission of electric power, TK3001-3521, frequency stability, grid-forming control, oscillatory stability

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research