Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Open Journal of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Open Journal of Power Electronics
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal LLC Converter Design With Topology Morphing Control for Wide Voltage Range Battery Charging Applications

Authors: Guvanthi Abeysinghe Mudiyanselage; Kyle Kozielski; Ali Emadi;

Optimal LLC Converter Design With Topology Morphing Control for Wide Voltage Range Battery Charging Applications

Abstract

LLC converters benefit from soft switching and sinusoidal currents over dual active bridge (DAB) converters. The design process of an LLC converter involves the selection of resonant tank inductor, capacitor, magnetizing inductance, resonant frequency, and transformer turns ratio for proper operation within the desired range of voltages and power. However, the design and control of frequency-modulated LLC converters in wide voltage range applications is challenging due to the wide range of switching frequencies. Topology morphing control is an established technique utilized for countering the challenges of wide voltage range LLC operation. This work provides a design framework for an LLC converter with topology morphing for wide voltage range applications. The proposed design framework uses time domain analysis and a power loss model to evaluate the optimal converter parameters for efficiency maximization over the entire voltage range. Methodology of implementing online topology morphing with closed-loop control in a digital signal processor (DSP) considering an on-board battery charger (OBC) application is also provided. The design optimization process and control methodology are validated through a 300–700 V input, 250–450 V output, 3.3 kW hardware demonstrator. An experimental peak efficiency of 97.72% is achieved compared to a calculated 97.63% efficiency, proving the accuracy of the analytical model. Time weighted averaged efficiency above 96.7% is observed over the entire voltage range.

Keywords

DC-DC converter, design optimization, resonant converter, TK1-9971, frequency modulation, online topology morphing, Electrical engineering. Electronics. Nuclear engineering, LLC

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold