Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Open Journal of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Open Journal of Vehicular Technology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy-efficient route and velocity planning for electric vehicles: A hierarchical eco-driving framework integrating traffic and road information

Authors: Dong Xie; Jianhua Guo; Yu Jiang; Zhuoran Hou; Jintao Deng;

Energy-efficient route and velocity planning for electric vehicles: A hierarchical eco-driving framework integrating traffic and road information

Abstract

The growing demand for decarbonization, coupled with the development of intelligent transportation systems (ITS), has driven the emergence of eco-driving technologies for electric vehicles (EVs). However, existing eco-driving technologies rarely integrate path and velocity planning while neglecting macro traffic flow and environmental impacts, resulting in less practical and less precise planning outcomes. Therefore, this study proposes a hierarchical eco-driving model that establishes a high-dimensional system incorporating macro traffic flow, micro vehicle model, and road environments. First, a traffic network model is constructed based on the real road topology. Next, a high-precision vehicle energy consumption model and a database of typical driving cycles are established to calculate the edge costs of the road network. Then, an energy-efficient route is efficiently planned using the proposed multi-heuristic A* algorithm. Finally, based on the route information from the upper level, along with traffic, kinematic, and road information, a convex optimization algorithm is employed to achieve accurate and efficient velocity planning. Experimental results demonstrate that the proposed method computes in less than 2 s for most scenarios and can effectively save energy and time by over 10%. The proposed framework offers a new solution for eco-driving and has significant practical implications.

Keywords

traffic flow, Transportation engineering, TA1001-1280, energy consumption, electric vehicle, Intelligent transportation system (ITS), eco-driving, Transportation and communications, HE1-9990

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research