
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy-efficient route and velocity planning for electric vehicles: A hierarchical eco-driving framework integrating traffic and road information

The growing demand for decarbonization, coupled with the development of intelligent transportation systems (ITS), has driven the emergence of eco-driving technologies for electric vehicles (EVs). However, existing eco-driving technologies rarely integrate path and velocity planning while neglecting macro traffic flow and environmental impacts, resulting in less practical and less precise planning outcomes. Therefore, this study proposes a hierarchical eco-driving model that establishes a high-dimensional system incorporating macro traffic flow, micro vehicle model, and road environments. First, a traffic network model is constructed based on the real road topology. Next, a high-precision vehicle energy consumption model and a database of typical driving cycles are established to calculate the edge costs of the road network. Then, an energy-efficient route is efficiently planned using the proposed multi-heuristic A* algorithm. Finally, based on the route information from the upper level, along with traffic, kinematic, and road information, a convex optimization algorithm is employed to achieve accurate and efficient velocity planning. Experimental results demonstrate that the proposed method computes in less than 2 s for most scenarios and can effectively save energy and time by over 10%. The proposed framework offers a new solution for eco-driving and has significant practical implications.
traffic flow, Transportation engineering, TA1001-1280, energy consumption, electric vehicle, Intelligent transportation system (ITS), eco-driving, Transportation and communications, HE1-9990
traffic flow, Transportation engineering, TA1001-1280, energy consumption, electric vehicle, Intelligent transportation system (ITS), eco-driving, Transportation and communications, HE1-9990
