
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A systematic approach for dynamic security assessment and the corresponding preventive control scheme based on decision trees
This paper proposes a decision tree (DT) based systematic approach for cooperative online power system dynamic security assessment (DSA) and preventive control. This approach adopts a new methodology that trains two contingency oriented DTs on daily basis by the databases generated from power system simulations. Fed with real-time wide area measurements, one DT about measurable variables is employed for online DSA to identify potential security issues and the other DT about controllable variables provides online decision support on preventive control strategies against those issues. A cost effective algorithm is adopted in this proposed approach to optimize the trajectory of preventive control. The paper also proposes an importance sampling algorithm on database preparation for efficient DT training for power systems with high penetration of wind power and distributed generation. The performance of the approach is demonstrated on a 400-bus, 200-line operational model of western Danish power system.
- Aalborg University Denmark
- Tennessee State University United States
- University of Tennessee at Knoxville United States
- IT University of Copenhagen Denmark
- Tennessee State University United States
Preventive control, Importance sampling, Decision trees, Phasor measurement unit, Dynamic security assessment
Preventive control, Importance sampling, Decision trees, Phasor measurement unit, Dynamic security assessment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).159 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
