Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An efficient approach for Unit Commitment and Economic Dispatch with combined cycle units and AC Power Flow

Authors: Gary A. Stern; Joseph H. Yan; Mikhail A. Bragin; Peter B. Luh;

An efficient approach for Unit Commitment and Economic Dispatch with combined cycle units and AC Power Flow

Abstract

Unit Commitment and Economic Dispatch (UCED) with combined cycle (CC) units and AC power flow is an important problem to be solved by ISOs. The problem is difficult because of complicated transitions in CC units and highly non-linear AC power flows. Currently, to solve the problem, transitions among CC states are simplified and AC power flow is approximated with DC power flow. However, the resulting solution may not be consistent with actual operations of power systems. In this paper, a more operational approach of modeling UCED with CC units and AC power flow is developed. Under the frequently used assumption of low network resistance, AC power flow is represented as a monotonic function. Then, the original problem is solved by exploiting the monotonicity through the novel dynamic linearization technique and separability after relaxing coupling system-wide demand constraints. The complexity of resulting subproblems is drastically reduced and linearity is efficiently exploited by using branch-and-cut. Subproblem solutions are efficiently coordinated by our recently developed surrogate Lagrangian relaxation and convergence is guaranteed. Based on a 30-bus system, numerical results demonstrate the new approach is more computationally efficient as compared to Benders decomposition.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average