
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Spatiotemporal Arbitrage of Large-Scale Portable Energy Storage for Grid Congestion Relief
Energy storage has great potential in grid congestion relief. By making large-scale energy storage portable through trucking, its capability to address grid congestion can be greatly enhanced. This paper explores a business model of large-scale portable energy storage for spatiotemporal arbitrage over nodes with congestion. We propose a spatiotemporal arbitrage model to determine the optimal operation and transportation schedules of portable storage. To validate the business model, we simulate the schedules of a Tesla Semi full of Tesla Powerpack doing arbitrage over two nodes in California with local transmission congestion. The results indicate that the contributions of portable storage to congestion relief are much greater than that of stationary storage, and that trucking storage can bring net profit in energy arbitrage applications.
Submitted to IEEE PES GM 2019; 5 pages,4 figures
- Tsinghua University China (People's Republic of)
- Carnegie Mellon University United States
- Massachusetts Institute of Technology United States
Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Optimization and Control (math.OC), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Mathematics - Optimization and Control
Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Optimization and Control (math.OC), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Mathematics - Optimization and Control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
