Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/pesgm4...
Conference object . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions

Stability of Algorithms for Electro-MagneticTransient Simulation of Networks with Switches and Non-linear Inductors

Authors: Shengtao Fan; Aniruddha M. Gole; Huanfeng Zhao;

Stability of Algorithms for Electro-MagneticTransient Simulation of Networks with Switches and Non-linear Inductors

Abstract

This paper extends the analysis of the stability of electromagnetic transient simulation algorithms to non-linear systems with switching elements and non-linear inductor branches. A theoretical analysis based on common quadratic Lyapunov function (CQLF) theory is used to investigate the stability of numerical algorithms for the simulation of lumped strictly passive switched circuits (LSPSC). It is proved that only when certain fundamental physical properties, i.e., passivity and invariance of Lyapunov energy function are satisfied, does the widely used trapezoidal method result in stable simulations of such networks for any time-step size. This is different from the simulation of linear time invariant (LTI) systems where any real world stable system has a stable simulation if an A-stable integration method (e.g., trapezoidal rule) is used. Subsequently, it is shown that the problem of simulating a piecewise linear inductor can be equivalent to simulating a LSPSC; and ergo its simulation with the trapezoidal rule is also stable.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average