
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Comparative Study of Surrogate Based Learning Methods in Solving Power Flow Problem
Due to increasing volume of measurements in smart grids, surrogate based learning approaches for modeling the power grids are becoming popular. This paper uses regression based models to find the unknown state variables on power systems. Generally, to determine these states, nonlinear systems of power flow equations are solved iteratively. This study considers that the power flow problem can be modeled as an data driven type of a model. Then, the state variables, i.e., voltage magnitudes and phase angles are obtained using machine learning based approaches, namely, Extreme Learning Machine (ELM), Gaussian Process Regression (GPR), and Support Vector Regression (SVR). Several simulations are performed on the IEEE 14 and 30-Bus test systems to validate surrogate based learning based models. Moreover, input data was modified with noise to simulate measurement errors. Numerical results showed that all three models can find state variables reasonably well even with measurement noise.
- Istanbul Technical University Turkey
- Florida International University United States
- Kadir Has University Turkey
- Kadir Has University Turkey
Power systems, Support vector regression, Machine learning, Gaussian process regression
Power systems, Support vector regression, Machine learning, Gaussian process regression
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
