
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Coordinated Control Method for DFIG-Based Wind Farm to Provide Primary Frequency Regulation Service
With the rapid growth of wind power penetration, system operators are required to enforce grid codes that implement frequency regulation of wind farms. This paper presents a distributed cooperation framework for a doubly fed induction generator-based wind farm to participate in primary frequency regulation, including imitated inertia and droop characteristics similar to conventional plants. Compared with centralized schemes, the control efficiency is significantly improved. To realize fast distributed coordination and optimal power distribution among wind turbines (WTs), a distributed Newton method is developed, which only requires WTs to exchange limited information with their neighbors over a sparse communication network, and has a super-linear convergence rate. By introducing an index of state of energy, this method can adequately exploit the kinetic energy of all WTs without loss of security. The simulation results indicate that the method exhibits satisfying dynamic performance and reliability, and the system frequency can be stabilized faster when the wind farm controlled by the proposed method participates in frequency control.
- Tianjin University China (People's Republic of)
- Tsinghua University China (People's Republic of)
- Tianjin University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).92 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
