
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An Adaptive Robust Optimization Model for Power Systems Planning with Operational Uncertainty
There is an increasing necessity for new long-term planning models to adequately assess the flexibility requirements of significant levels of short-term operational uncertainty in power systems with large shares of variable renewable energy. In this context, this paper proposes an adaptive robust optimization model for the generation and transmission expansion planning problem. The proposed model has a two-stage structure that separates investment and operational decisions, over a given planning horizon. The key attribute of this model is the representation of daily operational uncertainty through the concept of representative days and the design of uncertainty sets that determine load and renewable power over such days. This setup allows an effective representation of the flexibility requirements of a system with large shares of variable renewable energy, and the consideration of a broad range of operational conditions. To efficiently solve the problem, the column and constraint generation method is employed. Extensive computational experiments on a 20-bus and a 149-bus representation of the Chilean power system over a 20-year horizon show the computational efficiency of the proposed approach, and the advantages as compared to a deterministic model with representative days, due to an effective spatial placement of both variable resources and flexible resources.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).56 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
