Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/pesgm4...
Conference object . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulated P2P Energy Trading: A Typical Australian Distribution Network Case Study

Authors: M. Imran Azim; Wayes Tushar; Tapan Kumar Saha;

Regulated P2P Energy Trading: A Typical Australian Distribution Network Case Study

Abstract

This paper presents an approach to deploy virtually settled peer-to-peer (P2P) energy trading in existing grid-connected networks without considering post-trading protection schemes that may be required for bus voltage regulation. To achieve this goal, this paper demonstrates to consider the maximum power export limit fixed by the network operators while modelling the P2P trading framework in the virtual layer and then to determine the traded quantity of each prosumer in the P2P market along with the associated price per unit of energy traded. The developed P2P mechanism in this paper is tested on a real low-voltage (LV) distribution network in Australia, where the maximum local power injection limit has already been defined for the prosumers. The simulation results show that both prosumers and other customers of the network can still be benefited significantly, compared to the current feed-in-tariff (FiT) and electricity retail prices respectively, even though P2P traded quantities are regulated by the network operator. It is also observed that the prosumers’ engagement in P2P trading at various time slots do not rise bus voltages beyond the prescribed limit. Thus, virtually settled P2P transactions considering the power export constraint are suitable for practical deployment.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Top 10%
Top 10%