
Found an issue? Give us feedback
IEEE Transactions on Power Systems
Article . 1990 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Developing concurrent processing applications to power system planning and operations
Authors: M.F. McCoy; M.V.F. Pereira; H.J.C.P. Pinto; M.J. Teixeira;
Abstract
The authors describe the implementation of existing power system applications in a concurrent programming environment. The tools used comprise a multiprocessor computing system with concurrent processing software facilities and a concurrent processing simulator for assisting in problem partition and debugging. The goal is to obtain shorter execution times taking into account the solution structure. Three case studies are used to illustrate the application of the above tools and the development methodology: multiarea reliability, system analysis model, and security-constrained dispatch with postcontingency corrective rescheduling. Results obtained show a very high efficiency in the use of the concurrent processors. >
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).25 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
25
Average
Top 10%
Average
Fields of Science (3) View all
Related to Research communities
Energy Research