

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimization of a Magnetodynamic Receiver for Versatile Low-Frequency Wireless Power Transfer
Magnetodynamic wireless power transfer (WPT), also known as electrodynamic wireless power transfer, is a low-frequency WPT technology based on an electromechanical receiver comprising a permanent magnet moving in a coil. Because of the low-frequency field, this technology is safe around humans and enables transfer through conductive media. In this paper, we focus on the design and the optimization of the power receiver with advanced modelling methods. Two operating modes, namely a continuously rotating mode and a resonant mode, targeting high-power-density and mid-range power transfer respectively, are investigated and compared to previous versions. The fabricated 25-cm3 receiver presents substantial improvements in terms of transferred power (3.3W) and power density (x7) compared to previous receivers in the same conditions of fields.
- Grenoble Alpes University France
- University of Grenoble France
- CEA LETI France
- University of Grenoble France
- Florida Southern College United States
energy harvesting, [SPI] Engineering Sciences [physics], [SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics, wireless power transfer
energy harvesting, [SPI] Engineering Sciences [physics], [SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics, wireless power transfer
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average download downloads 8 - 8downloads
Data source Views Downloads ZENODO 0 8

