
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modelling and assessment of the techno-economic and environmental performance of flexible Multi-Generation systems
This paper presents a unified techno-economic and environmental mathematical model for market driven operation optimization of different Distributed Multi-Generation (DMG) options in district heating schemes. The identified concepts of DMG are capable of providing significant operational benefits in that they have the flexibility to respond to electricity market signals, which is particularly important in the presence of a less flexible and more intermittency dominated power system. At the same time, the formulation allows assessment of the environmental benefits under different scenarios. The optimization formulation cast as a mixed integer linear program (MILP), is capable to incorporate the use of different multi-energy technologies and explicitly model inter-temporal constraints that allow assessment of the benefits of thermal storage, amongst the others.
- University of Zagreb Croatia
- University of Salford United Kingdom
- University of Rijeka, Faculty of Physics Croatia
- University of Split Croatia
- University of Zagreb, Faculty of Electrical Engineering and Computing Croatia
cogeneration; distributed multi generation; electric heat pumps; flexibility; multi-energy systems; thermal storage
cogeneration; distributed multi generation; electric heat pumps; flexibility; multi-energy systems; thermal storage
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
