Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application of the adomian decomposition method for semi-analytic solutions of power system differential algebraic equations

Authors: Kai Sun; Nan Duan;

Application of the adomian decomposition method for semi-analytic solutions of power system differential algebraic equations

Abstract

This paper explores an alternative, semi-analytical approach to solution of the initial value problem of differentialalgebraic equations modeling a power system. Different from the traditional numerical integration based approach, this new approach applies the Adomian Decomposition Method to derive an approximate solution, called a semi-analytic solution (SAS), as a closed-form explicit function of time, the initial state and parameters on the system condition. Such a solution directly gives the power system's dynamic trajectory starting from an initial state that is accurate over a certain time window. Then, a multi-stage scheme evaluating the same SAS repeatedly for sequential time windows is able to give the system's trajectory for a desired simulation period without iterative computations as numerical integration does. The new approach is tested for power system transient stability simulation on a 3-machine, 9-bus power system and the IEEE 10-machine, 39-bus system, and its accuracy and time performance are compared with the 4th order Runge-Kutta method.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Top 10%