
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Aggregated effect of demand response on performance of future grid scenarios
handle: 10722/216426 , 10722/232351
The existing future grid (FG) feasibility studies have mostly considered simple balancing, but largely neglected network related issues and the effect of demand response (DR) for modelling nett future demand. This paper studies the effect of DR on performance of the Australian National Electricity Market in 2020 with the increased penetration of renewable energy sources (RESs). The demand model integrates the aggregated effect of DR in a simplified representation of the effect of market/dispatch processes aiming at minimising the overall cost of supplying electrical energy. The conventional demand model in the optimisation formulation is augmented by including the aggregated effect of numerous price anticipating users equipped with rooftop photovoltaic (PV)-storage systems. Simulation results show that increasing penetration of DR improves loadability and damping of the system with the increased penetration of RESs.
- University of Hong Kong China (People's Republic of)
- University of Hong Kong China (People's Republic of)
- University of Hong Kong (香港大學) China (People's Republic of)
- University of Sydney Australia
- University of Hong Kong (香港大學) China (People's Republic of)
Demand response, Demand model, Future grids, Power system stability, Renewable energy sources
Demand response, Demand model, Future grids, Power system stability, Renewable energy sources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
