
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modelling the charging probability of electric vehicles as a gaussian mixture model for a convolution based power flow analysis
This paper presents an approach for modelling the charging probability of electric vehicles as a Gaussian mixture model. The model is built up by assembling adapted multivari-ate normal probability density functions. This is done because the expectation maximization algorithm fails finding maximum likelihood estimates in respect of the charging power of the generated charging profiles. This Gaussian mixture model enables for capturing the charging profiles comprehensively with a few parameters and therefore it enables for calculating the charging probability dynamically for individual parameter intervals. The underlying assumptions about battery capacity, consumption, charging infrastructure, type of weekday and settlement structure determine the generation of the charging profiles. The proposed approach makes these parameters available for the density. Thereby, the provision of the charging profiles gets obsolete. This density can be used for a convolution based power flow analysis which offers benefits regarding the computational effort and random access memory usage com-pared to Monte Carlo-like simulations.
- Technical University Eindhoven Netherlands
- Technical University Eindhoven Netherlands
- Technical University Eindhoven TU Eindhoven Research Portal Netherlands
- Eindhoven University of Technology Netherlands
- RWTH Aachen University Germany
Electric vehicles, Sustainability and the Environment, Load flow, Energy Engineering and Power Technology, Convolution, Gaussian mixture model, SDG 7 - Affordable and Clean Energy, Renewable Energy, Electrical and Electronic Engineering, SDG 7 – Betaalbare en schone energie
Electric vehicles, Sustainability and the Environment, Load flow, Energy Engineering and Power Technology, Convolution, Gaussian mixture model, SDG 7 - Affordable and Clean Energy, Renewable Energy, Electrical and Electronic Engineering, SDG 7 – Betaalbare en schone energie
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
