Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Photovoltaics
Article . 2015 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://doi.org/10.1109/pvsc.2...
Conference object . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nanoscale investigation of polarization-dependent light coupling to individual waveguide modes of nanophotonic thin-film solar cells

Authors: Karsten Bittkau; Reinhard Carius; Uwe Rau; Ulrich W. Paetzold; Stephan Lehnen;

Nanoscale investigation of polarization-dependent light coupling to individual waveguide modes of nanophotonic thin-film solar cells

Abstract

Nanophotonic light management concepts are essential building blocks of advanced thin-film solar cells. These concepts make use of light coupling to waveguide modes that are supported by the photoactive absorber material of the solar cell. In a recent study, we presented a new method based on scanning near-field optical microscopy that enables the direct nanoscale investigation of light coupling to an individual waveguide mode in a nanophotonic thin-film silicon solar cell. Making use of this method, we investigate in this contribution the polarization dependence of the light coupling to a waveguide mode. Based on this polarization dependence, we can attribute the investigated waveguide mode to a transverse electric mode. Moreover, we identify the grating vector, which is responsible for the light coupling to the investigated waveguide mode in the nanopatterned thin-film silicon solar cell.

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research