Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HBO Kennisbankarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HBO Kennisbank
Conference object . 2020
Data sources: HBO Kennisbank
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/rams48...
Conference object . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aviation Data Analytics in MRO Operations: Prospects and Pitfalls

Authors: Apostolidis, Asteris; Pelt, Maurice; Stamoulis, Konstantinos P.; Myklebust, Thor; Stålhane, Tor; Jenssen, Gunnar Deinboll; Wærø, Irene;

Aviation Data Analytics in MRO Operations: Prospects and Pitfalls

Abstract

As every new generation of civil aircraft creates more on-wing data and fleets gradually become more connected with the ground, an increased number of opportunities can be identified for more effective Maintenance, Repair and Overhaul (MRO) operations. Data are becoming a valuable asset for aircraft operators. Sensors measure and record thousands of parameters in increased sampling rates. However, data do not serve any purpose per se. It is the analysis that unleashes their value. Data analytics methods can be simple, making use of visualizations, or more complex, with the use of sophisticated statistics and Artificial Intelligence algorithms. Every problem needs to be approached with the most suitable and less complex method. In MRO operations, two major categories of on-wing data analytics problems can be identified. The first one requires the identification of patterns, which enable the classification and optimization of different maintenance and overhaul processes. The second category of problems requires the identification of rare events, such as the unexpected failure of parts. This cluster of problems relies on the detection of meaningful outliers in large data sets. Different Machine Learning methods can be suggested here, such as Isolation Forest and Logistic Regression. In general, the use of data analytics for maintenance or failure prediction is a scientific field with a great potentiality. Due to its complex nature, the opportunities for aviation Data Analytics in MRO operations are numerous. As MRO services focus increasingly in long term contracts, maintenance organizations with the right forecasting methods will have an advantage. Data accessibility and data quality are two key-factors. At the same time, numerous technical developments related to data transfer and data processing can be promising for the future.

Country
Netherlands
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Top 10%
Top 10%
Green