Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://research.aal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://research.aalto.fi/file...
Conference object
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VIRTA
Conference object . 2017
Data sources: VIRTA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aaltodoc Publication Archive
Article . 2017 . Peer-reviewed
https://doi.org/10.1109/rtucon...
Conference object . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Probabilistic prosumer node modeling for estimating planning parameters in distribution networks with renewable energy sources

Authors: Millar, Robert John; Ekström, Jussi; Lehtonen, Matti; Koivisto, Matti; Saarijärvi, Eero; Degefa; Merkebu;

Probabilistic prosumer node modeling for estimating planning parameters in distribution networks with renewable energy sources

Abstract

With the increase in distributed generation, the demand-only nature of many secondary substation nodes in medium voltage networks is becoming a mix of temporally varying consumption and generation with significant stochastic components. Traditional planning, however, has often assumed that the maximum demands of all connected substations are fully coincident, and in cases where there is local generation, the conditions of maximum consumption and minimum generation, and maximum generation and minimum consumption are checked, again assuming unity coincidence. Statistical modelling is used in this paper to produce network solutions that optimize investment, running and interruption costs, assessed from a societal perspective. The decoupled utilization of expected consumption profiles and stochastic generation models enables a more detailed estimation of the driving parameters using the Monte Carlo simulation method. A planning algorithm that optimally places backup connections and three layers of switching has, for real-scale distribution networks, to make millions of iterations within iterations to form a solution, and therefore cannot computationally afford millions of parallel load flows in each iteration. The interface that decouples the full statistical modelling of the combinatorial challenge of prosumer nodes with such a planning algorithm is the main offering of this paper.

Country
Finland
Related Organizations
Keywords

distributed generation, statistical load analysis, ta213, distribution network planning, wind generation analysis, Monte Carlo simulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green