
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Classification of power quality events using extreme learning machine
Industrial plants and residential areas need to utilize electrical energy effectively. For this purpose smart grids were performed within power system voltage and current signals are processed and monitored in advanced. Thus controller systems provide such solutions that will keep the grid sustainability both faulty and normal conditions. In this study, single phase voltage data set consists of power quality events is composed in software and classified by an intelligent classifier. Distinctive features are extracted by discrete wavelet transform method. Feature vector size reduction is held via entropy values determining of discrete wavelet details. Extreme learning machine is used as classifier and its advantages in performance are evaluated with conventional artificial neural networks.
- Fırat University Turkey
- Fırat University Turkey
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
