
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Demand response in commercial buildings with an Assessable impact on occupant comfort
Electricity grids are facing challenges due to peak consumption and renewable electricity generation. In this context, demand response offers a solution to many of the challenges, by enabling the integration of consumer side flexibility in grid management. Commercial buildings are good candidates for providing flexible demand due to their volume and the stability of their loads. However, existing technologies and strategies for demand response in commercial buildings fail to enable services with an assessable impact on load changes and occupant comfort. In this paper we propose the ADRALOC system for Automated Demand Response with an Assessable impact on Loads and Occupant Comfort. This enhances the quality of demand response services from a grid management perspective, as these become predictable and trustworthy. At the same time building managers and owners can participate without worrying about the comfort of occupants. We present results from a case study in a real office building where we illustrate the advantages of the system (i.e., load sheds of 3kW within comfort limits). Presenting a better system for demand response in commercial buildings is a step towards enabling a higher penetration of intelligent smart grid solutions in commercial buildings.
- University of Southern Denmark Denmark
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
