Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/smc429...
Conference object . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust Decentralized Charge Control of Electric Vehicles under Uncertainty on Inelastic Demand and Energy Pricing

Authors: Seyed Mohsen Hosseini; Raffaele Carli; Alessandra Parisio; Mariagrazia Dotoli;

Robust Decentralized Charge Control of Electric Vehicles under Uncertainty on Inelastic Demand and Energy Pricing

Abstract

This paper proposes a novel robust decentralized charging strategy for large-scale EV fleets. The system incorporates multiple EVs as well as inelastic loads connected to the power grid under power flow limits. We aim at minimizing both the overall charging energy payment and the aggregated battery degradation cost of EVs while preserving the robustness of the solution against uncertainties in the price of the electricity purchased from the power grid and the demand of inelastic loads. The proposed approach relies on the so-called uncertainty set-based robust optimization. The resulting charge scheduling problem is formulated as a tractable quadratic programming problem where all the EVs' decisions are coupled via the grid resource-sharing constraints and the robust counterpart supporting constraints. We adopt an extended Jacobi-Proximal Alternating Direction Method of Multipliers algorithm to solve effectively the formulated scheduling problem in a decentralized fashion, thus allowing the method applicability to large scale fleets. Simulations of a realistic case study show that the proposed approach not only reduces the costs of the EV fleet, but also maintains the robustness of the solution against perturbations in different uncertain parameters, which is beneficial for both EVs' users and the power grid.

Countries
Italy, United Kingdom
Keywords

Decentralized control, Electric vehicles, Charge scheduling, Large-scale optimization, ADMM, Robust optimization, ADMM; Charge scheduling; Decentralized control; Electric vehicles; Large-scale optimization; Robust optimization; Set-based uncertainty, Set-based uncertainty

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Top 10%
Average