Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Applied Superconductivity
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New Technique for Using SMES to Limit Fault Currents in Wind Farm Power Systems

Authors: Mariam E. Elshiekh; Diaa-Eldin A. Mansour; Min Zhang; Weijia Yuan; Haigang Wang; Min Xie;

New Technique for Using SMES to Limit Fault Currents in Wind Farm Power Systems

Abstract

This paper introduces a new scheme, which uses a multifunctional superconducting device that can be used as an energy storage and as a fault current limiter. It is denoted as a superconducting magnetic energy storage - fault current limiter (SMES-FCL) and is modeled as a number of pancakes. It is connected to a wind turbine power system via tertiary transformer and power converters. A complete control scheme is built to achieve effective power transfer between the superconducting coil and the power system during normal operation to smooth the wind turbine output power. The fault current limiting function is implemented using a new technique that inserts a few pancakes from the whole SMES coil into the main electrical system during the fault and isolates the remaining pancakes. The number of pancakes used to limit the fault is quenched and operates as a resistive fault current limiter. The whole system including the wind turbine, the SMES-FCL model, and the interface circuit are implemented using PSCAD/EMTDC computer package. Also, the control scheme of SMES-FCL is built based on a feedback current signal to enable its operation into the two modes.

Country
United Kingdom
Related Organizations
Keywords

Energy storage, Electrical engineering. Electronics Nuclear engineering, superconducting coil, /dk/atira/pure/subjectarea/asjc/2500/2504; name=Electronic, Optical and Magnetic Materials, TK, Limiting, Resistance, Fault currents, Power system stability, 004, 620, /dk/atira/pure/subjectarea/asjc/2200/2208; name=Electrical and Electronic Engineering, Wind turbine generators, /dk/atira/pure/subjectarea/asjc/3100/3104; name=Condensed Matter Physics, Wind turbines, magnetic energy storage, fault current limiter

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Green
bronze
Related to Research communities
Energy Research