Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Components Packaging and Manufacturing Technology
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Load-Bearing Figure-of-Merit Characterization of a Thermoelectric Module

Authors: Roger Kempers; Éric V. Sempels; Frédéric Lesage;

Load-Bearing Figure-of-Merit Characterization of a Thermoelectric Module

Abstract

Thermoelectric behavior in semiconductor materials is investigated for the purpose of converting thermal energy to electrical energy. This paper measures and quantifies the variations in the internal electrical and thermal resistances of a thermoelectric module with respect to the circuit’s electrical load in order to better characterize its behavior in a closed circuit. Since open-circuit measurements fail to accurately describe thermoelectric material properties in power generation mode, the load-bearing Seebeck coefficient and the load-bearing figure-of-merit are defined, measured, and discussed. It is shown that the load-bearing Seebeck and the load-bearing figure-of-merit are more accurate parameters in measuring a module’s ability to operate in thermoelectric power generation mode. In particular, there exist peak load-bearing characteristics that are not identified using the conventional open-circuit definitions of the Seebeck coefficient and the figure-of-merit. The results show that the peak load-bearing figure-of-merit is compared with the peak power output showing a misalignment between the two quantities, the significance of which is discussed.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
bronze