

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Comparative Analysis of Projected Tunnel and CMOS Transistors for Different Logic Application Areas

handle: 10261/155915
In this paper, five projected tunnel FET (TFET) technologies are evaluated and compared with MOSFET and FinFET transistors for high-performance low-power objectives. The scope of this benchmarking exercise is broader than that of previous studies in that it seeks solutions to different identified limitations. The power and the energy of the technologies are evaluated and compared assuming given operating frequency targets. The results clearly show how the power/energy advantages of TFET devices are heavily dependent on required operating frequency, switching activity, and logic depth, suggesting that architectural aspects should be taken into account in benchmarking experiments. Two of the TFET technologies analyzed prove to be very promising for different operating frequency ranges and, therefore, for different application areas. Peer reviewed
Energy efficiency, Low supply voltage, Low power, Tunnel transistors, Steep subthreshold slope, Energy efficieny
Energy efficiency, Low supply voltage, Low power, Tunnel transistors, Steep subthreshold slope, Energy efficieny
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 63 download downloads 14 - 63views14downloads
Data source Views Downloads DIGITAL.CSIC 63 14


