Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Evolutionary Computation
Article . 2013 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization

Authors: Robin C. Purshouse; Rui Wang; Peter J. Fleming;

Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization

Abstract

The simultaneous optimization of many objectives (in excess of 3), in order to obtain a full and satisfactory set of tradeoff solutions to support a posteriori decision making, remains a challenging problem. The concept of coevolving a family of decision-maker preferences together with a population of candidate solutions is studied here and demonstrated to have promising performance characteristics for such problems. After introducing the concept of the preference-inspired coevolutionary algorithm (PICEA), a realization of this concept, PICEA-g, is systematically compared with four of the best-in-class evolutionary algorithms (EAs); random search is also studied as a baseline approach. The four EAs used in the comparison are a Pareto-dominance relation-based algorithm (NSGA-II), an e-dominance relation-based algorithm [ e-multiobjective evolutionary algorithm (MOEA)], a scalarizing function-based algorithm (MOEA/D), and an indicator-based algorithm [hypervolume-based algorithm (HypE)]. It is demonstrated that, for bi-objective problems, all of the multi-objective evolutionary algorithms perform competitively. As the number of objectives increases, PICEA-g and HypE, which have comparable performance, tend to outperform NSGA-II, e-MOEA, and MOEA/D. All the algorithms outperformed random search.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    368
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
368
Top 0.1%
Top 1%
Top 1%