
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Probabilistic Short-Term Wind Power Forecast Using Componential Sparse Bayesian Learning

A practical approach for probabilistic short-term generation forecast of a wind farm is proposed in this paper. Compared to the deterministic wind generation forecast, the probabilistic wind generation forecast can provide important wind generation distribution information for operation, trading, and some other applications. The proposed approach is based on Sparse Bayesian Learning (SBL) algorithm, which products probabilistic forecast results by estimating the probabilistic density of the weights of Gaussian kernel functions. Furthermore, since the wind generation time series exhibits strong non-stationary property, a componential forecast strategy is used here to improve the forecast accuracy. According to the strategy, the wind generation series is decomposed into several more predictable series by discrete wavelet transform (DWT), and then the resulted series are forecasted using SBL algorithm respectively. To fulfill multi-look-ahead wind generation forecast, a multi-SBL forecast model is constructed in the context. Tests on a 74-MW wind farm located in southwest Oklahoma demonstrate the effectiveness of the proposed approach.
- Shandong Women’s University China (People's Republic of)
- Shandong Women’s University China (People's Republic of)
- Monash University, Clayton campus Australia
- The University of Texas at Arlington United States
- The University of Texas at Arlington United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).76 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
