Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industry Applications
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Interconnections of HV–MV Stations to Global Grounding Systems

Authors: Maria Luisa Di Silvestre; Luigi Dusonchet; Salvatore Favuzza; Stefano Mangione; Liliana Mineo; Massimo Mitolo; Eleonora Riva Sanseverino; +1 Authors

On the Interconnections of HV–MV Stations to Global Grounding Systems

Abstract

The interconnection of grounding systems of HV–MV stations via the armors of medium voltage cables, is herein analyzed to verify the effects on touch voltages in ground-fault conditions. The major contributions of this paper are two: the analysis of the impact of an HV ground-fault on a global grounding system (GGS), and the analysis of the parameters that may affect safety due to the interconnection between HV–MV stations and the GGS. The authors have analyzed cases when the connection of an HV–MV station to a GGS improves safety, and then may introduce hazards under ground-fault conditions. Two main issues are herein discussed: 1) the transfer of dangerous voltages to substations, due to ground-faults occurring at the HV–MV station; and 2) the reduction in the magnitude of the ground potential rise caused by ground-fault conditions at substations, due to the connection of their ground grids to the HV–MV station's grounding system. This paper, by examining various grid configurations, demonstrates that in some instances the inclusion of HV–MV stations in the GGS may reduce the level of protection against touch voltages, and that this depends on the following elements: the number of MV lines fed by the faulted station, the number of MV–LV substations per line, the value of the ground resistance of the substations, and the distance between the substations. This paper has practical relevance for both utilities distribution systems and industrial facilities supplied by the MV power grid.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Top 10%
Top 10%