Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aalborg University R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VBN
Article . 2019
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industry Applications
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy Management System for an Islanded Microgrid With Convex Relaxation

Authors: Muhammad Fahad Zia; Elhoussin Elbouchikhi; Mohamed Benbouzid; Josep M. Guerrero;

Energy Management System for an Islanded Microgrid With Convex Relaxation

Abstract

Conventional energy generation sources mainly provide energy supply to remote areas nowadays. However, because of growing concerns over greenhouse gas emissions, the integration of renewable energy sources is mandatory to meet power demands and reduce climatic effects. The advancements in renewable generation sources and battery storage systems pave the way for microgrids (MGs). As a result, MGs are becoming a viable solution for power supply shortage problems in remote-area applications, such as oceanic islands. In this paper, an islanded MG, which consists of PV system, tidal turbine (TT), diesel generator (DG), and Li-ion battery, is considered for Ouessant island in Brittany region in France. The economic operation of the MG is achieved by including battery degradation cost, levelized costs of energy of the PV system and TT, operating and emission costs of DG, and network constraints. The developed model leads to a non-linear and non-convex problem, which unfortunately can converge to a local optimum solution. The problem has, therefore, been relaxed and converted to a convex second-order cone model to achieve an optimal decision strategy for islanded MG operations with a global or near-global solution. Numerical simulations are carried out to prove the effectiveness of the proposed strategy in reducing the operating and emission costs of the islanded MG. It is shown that the developed convex energy management system formulation has an optimality gap of less than 1% with reduced computational cost.

Countries
Denmark, France
Keywords

convex optimization, Microgrid, energy management system, Turbines, energy management system (EMS), Island, [SPI]Engineering Sciences [physics], Batteries, tidal turbine (TT), island, second-order cone programming, tidal turbine, Tidal turbine, Microgrids, Energy management system, demand response (DR), microgrid (MG), Demand response, Energy management, Computational modeling, Generators, Convex optimization, Second-order cone programming, demand response, PV system

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 1%
Top 10%
Top 1%
Green