Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industry Applications
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Price Incentive-Based Charging Navigation Strategy for Electric Vehicles

Authors: Xuecheng Li; Yue Xiang; Lin Lyu; Chenlin Ji; Qian Zhang; Fei Teng; Youbo Liu;

Price Incentive-Based Charging Navigation Strategy for Electric Vehicles

Abstract

With rapid development of the electric vehicle (EV) industry, charging infrastructures are built fast. However, the unreasonable deployments with increasing EVs contribute to a long queuing time for charging demand of EVs, especially in the peak hours. How to navigate a specific EV to economically satisfy its charging demand, while relieve the traffic burden, is an urgent problem. To address that, a price incentive-based charging navigation strategy for EVs is proposed. Unlike previous charging navigation studies that mainly focus on the EVs-transportation-power systems modeling, it considers the spatial-temporal influence of EVs’ charging decision, especially the simultaneous charging requests. Specifically, the charging navigation framework with the collaborative working mode of EV-charging station-information exchange center-intelligent transportation system is established first. Following this, spatiotemporal distribution of the charging demand is obtained through the origin–destination analysis. After this, an event-driven dynamic queue model is constructed. It contributes to the modeling of the charging strategy, together with the proposed reservation opportunity cost mechanism. Finally, the simulation results indicate that the presented charging navigation strategy can not only reduce the EV's charging cost but also improve the utilization rate of charging facilities, which verify its effectiveness.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 1%
Top 10%
Top 1%