Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industry Applications
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

State-of-Charge Estimation of Li-ion Battery Using Gated Recurrent Unit With One-Cycle Learning Rate Policy

Authors: Mahammad A. Hannan; Dickson N. T. How; Muhamad Bin Mansor; Md S. Hossain Lipu; Pin Ker; Kashem Muttaqi;

State-of-Charge Estimation of Li-ion Battery Using Gated Recurrent Unit With One-Cycle Learning Rate Policy

Abstract

Deep learning has gained much traction in application to state-of-charge (SOC) estimation for Li-ion batteries in electric vehicle applications. However, with the vast selection of architectures and hyperparameter combinations, it remains challenging to design an accurate and robust SOC estimation model with a sufficiently low computation cost. Therefore, this study provides a comparative evaluation among commonly used deep learning models from the recurrent, convolutional, and feedforward architecture benchmarked on an openly available Li-ion battery dataset. To evaluate model robustness and generalization capability, we train and test models on different drive cycles at various temperatures and compute the root mean squared error (RMSE) and mean absolute error metric. To evaluate model computation costs, we run models in real-time and record the model size, floating-point operations per second (FLOPS), and run-time duration per datapoint. This study proposes a two-hidden layer stacked gated recurrent unit model trained with a one-cycle policy learning rate scheduler. The proposed model achieves a minimum RMSE of 0.52% on the train dataset and 0.65% on the test dataset while maintaining a relatively low computation cost. Executing the proposed model in real-time takes up approximately 1 MB in disk space, 300K FLOPS, and 0.03 ms run-time per datapoint. This makes the proposed model feasible to be executed on lightweight battery management system processors.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 1%