
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ripple Power Steering of HFL-TPC Connected VSI for PV-BESS/EV Applications

This article presents low-frequency ripple power steering control strategies for a power conversion topology that comprises a high frequency linked three-port converter (HFL-TPC) and a voltage source inverter (VSI) for PV-BESS/EV applications. The proposed topology has three interfaces, which can be connected with a photovoltaic (PV) port, battery energy storage systems (BESS) and/or electric vehicles (EVs) port, and a four-quadrant ac port. The proposed topology inherently exhibits double line frequency (DLF) power fluctuation that needs to be decoupled and steered away from the PV port. In this article, we have developed and demonstrated two control strategies to deal with the DLF ripple. The first control strategy utilizes loop gain of the closed loop control system to decouple the DLF power, however, a residual DLF power still exists at the ac port. To completely decouple the DLF fluctuations, an improved sequence-based control strategy is proposed where the DLF voltage components are converted into positive and negative sequence components and controlled separately on their respective synchronous reference frames. To verify the practical feasibility of the proposed low-frequency ripple power steering control strategies, a 40 V, 400 W HFL-TPC is built and tested. Experimental results show that the proposed methods decouple the DLF power fluctuation and selectively steer it to the BESS/EV port. Comparative results reveal that the sequence-based control strategy shows a higher degree of DLF ripple suppression.
- Aalborg University Library (AUB) Aalborg Universitet Research Portal Denmark
- Aalborg University Denmark
- Aalborg University Library (AUB) Denmark
- Central Queensland University Australia
- Aalborg University Denmark
DLF, virtual power plant, DFL, ripple power steering, VSI, PC, PV, BESS, 620
DLF, virtual power plant, DFL, ripple power steering, VSI, PC, PV, BESS, 620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
