Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Online Research Data...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industry Applications
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions

Efficiency Characteristic and Operating Area of High-Power Reconfigurable Batteries

Authors: Jan Engelhardt; Jan Martin Zepter; Mattia Marinelli; Luigi Piegari;

Efficiency Characteristic and Operating Area of High-Power Reconfigurable Batteries

Abstract

Reconfigurable batteries can change their cell topology in real time, which enables them to adapt their voltage during operation. This unique capability makes interfacing power converters redundant in applications where batteries are directly coupled with other DC components or systems. The present paper characterizes a 104 kWh prototype of a reconfigurable battery for high power applications, and derives equations for calculating the battery efficiency for the complete operating area. The battery can adapt its voltage from 0 V up to 1200 V, and reaches power values of 240 kW for charging, and 280 kW for discharging. The results are presented in efficiency maps, showing the dependency on voltage, power, and state of charge. Moreover, the efficiency characteristic is compared to a conventional battery with fixed cell topology and DC-DC converter. The reconfigurable battery can operate at a wider voltage range and achieves better efficiency up to an average power of 44.6 kW during charging, and 46.7 kW during discharging. Conversely, the conventional system performs better above these thresholds. Finally, the presented model can be used to optimize the design of reconfigurable battery strings, and to accurately size such systems for specific applications and purposes.

Countries
Italy, Denmark
Keywords

Energy storage, energy storage, Resistance, Battery losses, battery characterization, cell balancing, battery losses, Voltage, Voltage measurement, Batteries, Thevenin equivalent, Dc-dc converter, Cell balancing, Prototypes, Computer architecture, dc-dc converter, Battery characterization, Microprocessors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green